Reduced compartmental models of neocortical pyramidal cells.
نویسندگان
چکیده
Model neurons composed of hundreds of compartments are currently used for studying phenomena at the level of the single cell. Large network simulations require a simplified model of a single neuron that retains the electrotonic and synaptic integrative properties of the real cell. We introduce a method for reducing the number of compartments of neocortical pyramidal neuron models (from 400 to 8-9 compartments) through a simple collapsing method based on conserving the axial resistance rather than on the surface area of the dendritic tree. The reduced models retain the general morphology of the pyramidal cells on which they are based, allowing accurate positioning of synaptic inputs and ionic conductances on individual model cells, as well as construction of spatially accurate network models. The reduced models run significantly faster than the full models, yet faithfully reproduce their electrical responses.
منابع مشابه
Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method.
We introduce a method that permits faithful extraction of the decay time course of the synaptic conductance independent of dendritic geometry and the electrotonic location of the synapse. The method is based on the experimental procedure of Pearce (1993), consisting of a series of identical somatic voltage jumps repeated at various times relative to the onset of the synaptic conductance. The pr...
متن کاملConstraining compartmental models using multiple voltage recordings and genetic algorithms.
Compartmental models with many nonlinearly and nonhomogeneous distributions of voltage-gated conductances are routinely used to investigate the physiology of complex neurons. However, the number of loosely constrained parameters makes manually constructing the desired model a daunting if not impossible task. Recently, progress has been made using automated parameter search methods, such as gene...
متن کاملDeterminants of voltage attenuation in neocortical pyramidal neuron dendrites.
How effectively synaptic and regenerative potentials propagate within neurons depends critically on the membrane properties and intracellular resistivity of the dendritic tree. These properties therefore are important determinants of neuronal function. Here we use simultaneous whole-cell patch-pipette recordings from the soma and apical dendrite of neocortical layer 5 pyramidal neurons to direc...
متن کاملIs Attentional Blink a Byproduct of Neocortical Attractors?
This study proposes a computational model for attentional blink or "blink of the mind," a phenomenon where a human subject misses perception of a later expected visual pattern as two expected visual patterns are presented less than 500 ms apart. A neocortical patch modeled as an attractor network is stimulated with a sequence of 14 patterns 100 ms apart, two of which are expected targets. Patte...
متن کاملModeling Active Dendritic Processes in Pyramidal Neurons
The role of active ion channels in dendritic function is among the most interesting and complex aspects of information processing in single neurons While the behavior of isolated channels or the passive electrical properties of dendrites can be studied in isolation, the interaction of multiple nonlinear ionic currents within a geometrically complex structure is described by equations that canno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 46 2 شماره
صفحات -
تاریخ انتشار 1993